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Electrostatic interaction between long, rigid helical macromolecules at all interaxial angles
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We derive formulas for the electrostatic interaction between two long, rigid macromolecules that may have
arbitrary surface charge patterns and cross at an arbitrary interaxial angle. We calculate the dependence of the
interaction energy on the interaxial angle, on the separation, and on the precise alignment of the charge pattern
on one molecule with respect to the other. We focus in particular on molecules with helical charge patterns. We
report an exact, explicit expression for the energy of interaction between net-neutral helices in a nonpolar
medium as well as an approximate result for charged helices immersed in an electrolyte solution. The latter
result becomes exact in the asymptotic limit of large separations. Molecular chirality of helices manifests itself
in a torque that tends to twist helices in a certain direction out of parallel alignment and that has a nontrivial
behavior at small interaxial angles. We illustrate the theory with the calculation of the torque between layers of
idealized, DNA-like double helices in cholesteric aggregates. We propose a mechanism of the observed
cholesteric-to-columnar phase transition and suggest an explanation for the observed macroscopic~0.4–5mm!
pitch of the cholesteric phase ofB-DNA.

PACS number~s!: 87.14.Gg, 61.30.Cz, 87.15.Kg, 64.70.Md
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I. INTRODUCTION

Assemblies of long helical macromolecules are comm
building blocks of living organisms. Bundles ofa-helices
form domains in many proteins. Bundles of triple-helical c
lagen form tendons, ligaments, cornea, matrix of skin a
bone, and other connective tissue structures. DNA is o
stored inside cells and viral capsids in the form of den
aggregates. In other words, many biological interactions
volve helices and many complex biological structures con
of helices.

All helices are chiral, i.e., the mirror image of a righ
handed helix is left-handed and vice versa. Biological heli
manifest their chirality by twisting with respect to eac
other. Specifically,a-helices form bundles and coiled coi
where their long axes cross at a small angle. DNA form
cholesteric phase that consists of molecular layers. The m
ecules are parallel within each layer, but their principle a
rotates from layer to layer by a small, constant angle, ty
cally a fraction of a degree@1–6#. Similar assemblies are
formed bya-helices in organic solvents@1,7,8#, by collagen
at low pH @9#, and by a variety of other helices. The dire
tion and the amplitude of the twist in cholesteric phases
helical bundles, and in coiled coils are not random. They
encoded in intermolecular interactions and they are alw
the same under similar conditions.

The relationship between the twist and the molecu
structure is not trivial and still not understood. Some of t
puzzles are:~a! reversal of the direction of the twist in th
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cholesteric phase that occurs upon variation in solvent c
position even though the handedness of helices remains
same@7#; ~b! dependence of the amplitude of the twist on t
interaxial separation between helices@7,8,10#; ~c! phase tran-
sitions in assemblies of helices, e.g., the transition from
nonchiral line hexatic phase to the chiral cholesteric ph
@11,12#; ~d! anomalously small interaxial angles between h
lices in the cholesteric phase that could not be justified
terms of structural and dimensional arguments@1–11,13,14#.
The solution of these puzzles is likely to be based on und
standing properties of chiral interaction potentials betwe
helices at nonzero interaxial angles@15#. Creation of a rigor-
ous theory for such interaction is believed to be one of
biggest challenges of the physics of molecular chira
@15,16#.

Electrostatics is a major component of interaction b
tween biological helices since virtually all of them have hi
density of surface charges. For instance, DNA has an
ementary charge per each 1.7 Å of its axial length. As
result, interactions between DNA helices in aggregates
primarily electrostatic. Backbone of ana-helix contains a
negatively charged carbonyl oxygen and a positively char
amide hydrogen per each 3–4 Å of axial length. The spira
carbonyls and amides produces an electric field that ex
nentially decays away from it with the characteristic leng
;1 Å. The electrostatic interaction between neighbori
a-helices in a bundle may be quite strong because of t
close contact and their low dielectric constant.

Fifty years ago, a formula for the energy of electrosta
interaction between crossed, homogeneously charged ro
electrolyte solution was derived by Onsager based on
Derjaguin approximation@17#. Twenty five years later, a
more general result for the same problem was obtained
2576 ©2000 The American Physical Society
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PRE 62 2577ELECTROSTATIC INTERACTION BETWEEN LONG, . . .
Brenner and Parsegian@18# without using the Derjaguin ap
proximation. Recent studies@19–21# went beyond the mean
field approach and revealed a possibility of attraction at sh
distances between the rods, induced by ion density fluc
tions. However, homogeneously charged rods are not ch
and, therefore, these results tell nothing about the chiral
tential. Further progress was impeded by the absence
mathematical formalism appropriate for chiral helical mac
molecules.

To address the effects of molecular chirality, one m
take into account the helical structure of a surface cha
pattern and its handedness. Electrostatic models for an
lated, charged spiral in an electrolyte solution were rece
reported in Refs.@22–26#. In particular, the electrostatic po
tential, counterion distribution around DNA, and the tran
tion between theB and A forms of DNA in solution were
discussed. Electrostatic interactions between several he
that have parallel long axes were calculated in Ref.@27#. It
was suggested that various details of the helical symmetr
DNA surface charge pattern may be responsible for s
observed phenomena as: DNA overwinding from;10.5
base pairs~bp! per turn in solution to 10 bp/turn in fiber
@28#, meso-, and polymorphism of DNA in dense aggrega
@29#, and DNA condensation by counterions@30#. However,
none of these results can be directly applied to intermole
lar interaction in chiral aggregates~twisted bundles and the
cholesteric phase! where molecular axes cross at a nonze
angle.

Development of a theory for electrostatic interactions
tween long, chiral macromolecules at all interaxial angles
the subject of the present work. First, we derive a result
is valid at arbitrary charge distributions on molecular s
faces. Next, we apply this result to molecules whose surf
charge patterns have basic helical symmetries. At the pre
stage, we incorporate only the most simple, but essen
elements of helical structure. We assume that molecules
rigid rods that have helical surface charge patterns.
model a spiral string of point charges by a continuous sp
line charge with the appropriate charge density, helical pi
and handedness.

Imperfections of molecules and thermal motions are
included into the model. This is not because we believe
the corresponding details are not important, but because
can hope to understand the reality only after thoroughly
amining the most simple ‘‘ground state’’ of the system. On
we understand the basics, we will be able to build in det
and investigate their role in each specific case.

In general, chiral phenomena are very complex. Each
them deserves a separate, dedicated discussion, becaus
ferent details are important in each case. Here we focus
marily on laying out the background for the theory. For
lustration, we consider interaction between 150 bpB-DNA
fragments that can be roughly approximated as rigid.
suggest how different observed features of the cholest
phase formed by such DNA fragments can be qualitativ
deduced from properties of the chiral interaction poten
between them.

The paper is structured as follows. In Sec. II, we defi
the model. In Sec. III, we present general formulas for
energy of interaction between molecules with helical surf
charge patterns and consider simple limiting cases. In S
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IV, we discuss interaction between infinitely long helices
small interaxial angles and large separations. In Sec. V,
show how the results derived for infinitely long helices c
be modified and applied to a more realistic case of inter
tion between two helices of finite length. In Sec. VI, w
analyze main qualitative features expected and observe
the cholesteric phase of 150 bp DNA. All algebra is repor
in the Appendix where we derive formulas for the energy
interaction between two molecules with arbitrary surfa
charge distribution at an arbitrary interaxial angle and ap
these formulas to molecules with helical charge patterns

II. MODEL

We consider interaction between two long, rigid mo
ecules whose axes cross at an arbitrary anglec and are sepa-
rated by the distanceR at the point of their closest approac
The configuration and coordinate systems are shown s
matically in Fig. 1. The molecules have cylindrical, dielectr
inner cores. They are immersed either in an electrolyte s
tion or in a nonpolar medium. Their intrinsic surface charg
form arbitrary, inhomogeneous patterns at surfaces of
inner cores.

We calculate the electric field and the electrostatic int
action energy as a function ofc and R and of the precise
alignment of the charge pattern on one molecule with resp
to the other. We start from the interaction Hamiltonian whi
is the energy at fixed surface charge patterns. Provided
the Hamiltonian for each isolated molecule is known@31#,

FIG. 1. Configuration of two molecules~1,2! twisted with re-
spect to each other by an interaxial anglec and shifted by a vector
R connecting two points of the closest approach on molecular a
We use three Cartesian coordinate systems:~i! the laboratory frame
~x,y,z! whosez axis coincides with the long axis of molecule 2 an
x axis goes through the points of closest approach on the axe
molecules 1 and 2;~ii ! the shifted laboratory frame (x8,y8,z8)
translated by the vector2R relative to~x,y,z!; and~iii ! the molecu-
lar frame (x9,y9,z9) whosez9 axis coincides with the long axis o
molecule 1 andx9 axis is coaxial with thex axis of the laboratory
frame. They9 axis is not shown to avoid overloading the sketch.
addition to the Cartesian frames, we use two cylindrical molecu
frames, each coaxial with the long axis of the corresponding m
ecule.
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2578 PRE 62A. A. KORNYSHEV AND S. LEIKIN
one can then determine the interactionfree energyby aver-
aging over fluctuations of surface charge densities. In
present work, however, we focus on a more simple c
when one can substitute the averaged surface charge pa
into the interaction Hamiltonian to obtain the free energ
This can be done when the energy ofintermolecular interac-
tion is much smaller than theintramolecular energy and
when the surface charge distributions do not undergo st
tural transitions, triggered by intermolecular interactio
Such conditions are satisfied in the asymptotic limit of lar
intermolecular separations or when counterions are stro
bound ~chemisorbed! at fixed positions on the surfaces.
these cases, the average surface charge pattern can eith
calculated from an adsorption model or it can be appro
mated on the basis of semiempirical considerations or c
puter simulations.

Using an average surface charge pattern in the interac
Hamiltonian, we also leave out forces associated with co
lated surface charge density fluctuations. Such forces w
proposed to play an important role in interaction betwe
homogeneously charged rods@19,20,32–34#. They can affect
the character of the interaction and lead to comp
nonpairwise-additive forces in bundles of rods@20,34#. How-
ever, their relative contribution to interaction betwe
charged biological helices, such as DNA, is not presen
clear. The published theoretical studies of such interacti
do not provide direct comparison with pertinent experimen
results that are available in the literature. At the same ti
predictions of the theory@27,30# that neglect surface charg
density fluctuations but take into account the discrete hel
structure of surface charge distributions seem to be con
tent with both repulsive and attractive interactions measu
between double-stranded DNA helices and between fo
standard guanosine helices@27,30,35,36#. At the present, ini-
tial step of our study we will neglect forces associated w
surface charge density fluctuations. However, the possib
that these forces may not be negligible is useful to keep
mind until this issue is clarified.

A. Debye-Hückel-Bjerrum approximation

1. Interaction in electrolyte solution

Many biological macromolecules, DNA in particula
have high density of surface charges. Under physiolog
conditions, they are surrounded by an ionic atmosphere w
the Debye lengthlD;7 Å. It is natural to expect here
nonlinear screening of fixed surface charges by electro
ions which is often treated within the mean-field, nonline
Poisson–Boltzmann theory@19,32,37#. However, most of the
counterions which contribute to the nonlinear screening
within a narrow layer around each molecule. We refer
them as condensed counterions. The thickness of this l
can be estimated asdc<A/4p l B , where A is the average
area per elementary charge on the molecular surface anl B
5e2/«kBT is the Bjerrum length~'7 Å in water!. For most
biological macromoleculesA<100 Å2 and dc,2 Å. The
thickness of this layer is smaller than the size of a wa
molecule and than the characteristic roughness of the co
gated macromolecule/water interface. Mean-field descrip
of an electric field inside such a thin layer is inappr
priate.
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We replace the Poisson–Boltzmann approximation by
plicit treatment of condensed counterions. Specifically,
describe the molecular-core/water interface and the nonlin
screening layer as a single, infinitesimally thin surface t
may have an arbitrary, inhomogeneous charge density.
surface contains fixed surface charges, chemisorbed i
and mobile, condensed counterions. We describe the dif
ionic atmosphere outside this surface within the Deb
Hückel theory@38#.

This approach is similar to the two-state model~con-
densed counterions and free ions! commonly used in poly-
electrolyte theory at nonvanishing salt concentratio
@32,19,34#. It is also similar to the Debye-Hu¨ckel-Bjerrum
model which has proved to be quite successful in the the
of concentrated electrolyte solutions, including the theory
Coulomb criticality @39–42#. In our case, one may expec
such a model to be accurate as long as the ratio ofdc to all
other characteristic lengths in the system~the Debye length,
the surface-to-surface distance between the molecules
helical pitch, etc.! is small.

2. Interaction in nonpolar medium

While nucleic acid helices~DNA or RNA! typically re-
side in aqueous electrolyte environment, many protein h
ces are immersed into nonpolar media. These may
a-helical domains inside a large globular protein or, e.
transmembranea-helices. Interaction between helical macr
molecules in a nonpolar environment is relevant not o
because of its potential biological applications, but also
cause of its conceptual importance. Indeed, lipid membra
and the interior of globular proteins have about the sa
dielectric constant as cores ofa-helices, i.e., we can assum
that the dielectric constant is the same everywhere. Furt
more, nonpolar media do not have dissolved electrolyte i
inside. This allows us to avoid approximations associa
with interfaces between two different dielectrics and difficu
ties inherent to theories of electrolyte solutions. As a res
we can obtainthe exactsolution of the electrostatic problem
as a particular case of the Debye-Hu¨ckel-Bjerrum model at
kD51/lD50 and«c5«s5«, where«c is the dielectric con-
stant of the molecular cores and«s is the dielectric constan
of the solvent.

B. Surface charge patterns

We describe all charges at each molecular-core/water
terface explicitly by their surface charge densitiessn(z,f),
each in its own ‘‘molecular’’ frame of cylindrical coordi
nates. The indexn(51,2) labels the two molecules. Thez
axis of each molecular frame coincides with the molecu
axis; z50 is the point of the closest approach between m
lecular axes;f50 corresponds to the direction of the vect
R connecting the points of the closest approach on the a
of the two molecules~Fig. 1!. In the Appendix, we derive a
general relationship between the interaction energy and
cylindrical Fourier transforms of the surface charge densi
s̃n(q,n) that are defined as follows:

s̃n~q,n!5
1

2p E
0

2p

dfE
2`

`

dzsn~z,f!einfeiqz. ~1!
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PRE 62 2579ELECTROSTATIC INTERACTION BETWEEN LONG, . . .
In the present work we focus on the interaction between
identical helical macromolecules assuming that their surf
charge densities obey the basic helical symmetry requ
ment

sn~z1Dz,f1gDz!5sn~z,f!, ~2!

where g52p/H for right-handed helices,g522p/H for
left-handed helices, andH is the helical pitch. Typically, this
occurs when the charge density follows the underlying sy
metry of the molecule. The surface charge density can t
be rewritten in the form

sn~z,f!5s0P~z2f/g2zn1fn /g!. ~3!

HereP(x) is a periodic function that defines the axial char
distribution,

P~x1Hk!5P~x!, k561,62,...; ~4!

zn andfn define relative dispositions of the molecules;s0 is
the mean surface density of dominant@43# fixed charges. For
example, we describe a DNA molecule by the coordinatezn

of the center point on its principal axis and by the azimut
anglefn of the middle of the minor groove atz5zn ~Fig. 2!.

Within this definition, the mean surface charge density

s̄5s0

1

H E
0

H

P~x!dx. ~5!

The cylindrical Fourier transform ofsn(z,f), defined by Eq.
~3!, gives

s̃n~q,n!52ps0eingzn2 infnp~q!d~q1ng!, ~6!

FIG. 2. ~a! Structure ofB-DNA with negatively charged oxy-
gens of phosphate groups shown in black~bottom! and the corre-
sponding model of charge distribution on DNA surface~top!. Ad-
sorbed ~condensed! counterions are shown schematically
residing in the major and minor grooves. The model represe
molecule 1 and it is shown in the projection on (x9,z9) plane of the
corresponding molecular frame~see Fig. 1!. R is the vector con-
necting the points of the closest approach on the axes of molec
1 and 2~Fig. 1! where molecule 2 is not shown.~b! Cross section of
the molecule atz95z1 . The azimuthal orientation of the molecu
is defined by the azimuthal coordinate of the middle of the mi
groovef1 .
o
e

e-

-
n

l

s

whered(x) is the Dirac’s delta function and

p~q!5
1

H E
0

H

dx eiqxP~x!. ~7!

The reference point coordinates (zn ,fn) can always be se
lected to ensure real values ofp(q) at all q. For DNA, this is
done by selecting the coordinate of the middle of the min
groove asfn .

C. B-DNA helices

TheB form ~see Fig. 2! is the most common state of DNA
in aqueous solutions@44#. B-DNA has an inner core formed
by hydrogen bonded Watson-Crick nucleotide pairs. T
nucleotides are attached to two sugar-phosphate strands
raling around the core and forming the well-known doub
helix that has theH533.8 Å pitch (g'0.186 Å21). Each
phosphate group bears a negative charge. Their centers
the radial distancea'9 Å from the molecular axis. There
are two phosphate groups per base pair and'10 base pairs
per helical turn so thats0'16.8mC/cm2. The helix is fairly
stiff, its persistence length is 500–1000 Å~depending on the
ionic strength! ~see, e.g., Ref.@45# and references therein!. In
cells and viruses, DNA is often packed within a tight com
partment so that different folds of the same helix or differe
helices come to;5–30 Å surface-to-surface separatio
within each other (R;25– 50 Å) and form various liquid
crystalline phases@4,5#.

Since simple structural and dimensional arguments
not explain chiral properties of liquid crystalline phases
DNA, a natural approach is to develop a statistical the
based on a chiral pair potential. Here we calculate such
tential based on the simplest possible model of a DNA s
face charge pattern that incorporates molecular chira
Specifically, we consider phosphate strands as continu
charged helical lines. We distinguish four qualitatively d
ferent types of location of adsorbed and condensed coun
ons: ~1! on a helical line in the middle of the minor groove
~2! on a helical line in the middle of the major groove,~3! on
phosphate strands, and~4! random. From the correspondin
model forP(z), we find @29,30#

p~q!5~12 f 12 f 22 f 3!udq,01 f 1u1 f 2 u cos~pq/g!

2~12 f 3u!cos~f̃sq/g!, ~8!

wheredx,y is the Kroenecker’s delta;f̃s('0.4p) is the azi-
muthal half width of the minor groove;u is the fraction of
the charge of phosphates neutralized by adsorbed and
densed counterions;f i are the fractions of counterions in th
middle of the minor groove (f 1), in the middle of the major
groove (f 2), and on the phosphate strands (f 3); f 11 f 21 f 3
<1. The fraction of randomly adsorbed counterions is
2 f 12 f 22 f 3). As a reference point forP(z) we select the
middle of the minor groove~Fig. 2!.

Of course, this model is an idealization but a reasona
one, at least for 150 bp DNA fragments. Indeed:~i! Such
fragments are about one persistence length long~500 Å! so
that they can be roughly considered as straight and rigid.~ii !
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2580 PRE 62A. A. KORNYSHEV AND S. LEIKIN
As long as the energy of interaction between molecules
ceeds the thermal energy (kBT), thermal motions may intro-
duce corrections, but they should not change the ove
qualitative behavior of the liquid crystalline phase.~iii ! For
500 Å long fragments, base pair heterogeneity does not
to significant deviations from the ideal helix@46#. ~iv! For
monovalent and polymeric counterions~such as polyamines!
that were used to study the cholesteric phase, discretene
phosphate and counterion charges is not essential, e.g
helical chain of discrete phosphates can be modeled
li-
x-

ll

ad

of
the

a

continuous charged spiral@47#; ~v! This model has already
proved to be quite successful in several applications@29,30#.

III. GENERAL RESULTS

A. Interaction at nonzero interaxial angles

In an electrolyte solution, the energy of interaction be
tween two identical, infinitely long helices crossing
an interaxial anglecÞ0 is given by ~for derivation see
Appendix!
ular
The

s after

te

n

Eint'
8p3s0

2

«susincu
(

n,m52`

`
~21!mp~2ng!p~mg!cos@n~f12gz1!2m~f22gz2!#

knkm
2 @12b̃n~ng!#@12b̃m~mg!#Kn8~kna!Km8 ~kma!

3
@A11wm,n

2 ~c!1wm,n~c!#n@A11wn,m
2 ~c!1wn,m~c!#m

A11wn,m
2 ~c!

e2kmRA11wn,m
2

~c!, ~9!

where

wn,m~c!5
ng2mgcosc

km sinc
; ~10!

kn5Ak21n2g2 ; ~11!

b̃n~q!5
«c

«s

uqu
kn

Kn~kna!I n8~ uqua!

I n~ uqua!Kn8~kna!
; ~12!

a is the radius of the water-impermeable molecular cores of the helices;R is the closest approach distance between molec
axes~Fig. 1!; I m(x) andKm(x), I m8 (x) andKm8 (x) are the modified Bessel functions and their derivatives, respectively.
derivation of Eqs.~9!–~12! involves only one approximation, namely the truncation of the series of consecutive image
the first-order term~see Appendix!. Relative contributions of higher-order images decrease as exp(22(R22a)/lD), whereR
22a is the closest approach surface separation between helices. AtR22a.lD , such approximation is sufficiently accura
for all practical purposes.

In further analysis of interaction between biological helices in an electrolyte solution we use«c'2, «s'80, and b̃n

;«c /«s!1. Therefore, we neglectb̃n compared to 1. However, in a nonpolar mediumb̃n;1 and it cannot be neglected.
In a nonpolar medium, after substitution of«c5«s5« andk50 into Eq.~9!, we find that the energy of interaction betwee

crossed helices is given by

Eint5
8p3s0

2a2

«usincu (
n,m52`

`
~21!mp~2ng!p~mg!cos@n~f12gz1!2m~f22gz2!#

umgu
I n~ ungau!I m~ umgau!

3
@A11w̃m,n

2 ~c!1w̃m,n~c!#n@A11w̃n,m
2 ~c!1w̃n,m~c!#m

A11w̃n,m
2 ~c!

e2umguRA11w̃n,m
2

~c! , ~13!
g
r an
n-
as

sion
where

w̃n,m~c!5
ng2mgcosc

umgusinc
. ~14!

This is the exactexpression for the given choice of the he
cal surface charge pattern.
B. Interaction between parallel helices

At c→0, the energy of interaction between infinitely lon
molecules diverges because the molecules overlap ove
infinite length. In this case, the meaningful value is the e
ergy density per unit length which can be calculated
limL→`(Eint /L), whereL is the length of the molecules. In
other words, for infinitely long molecules thec50 andc
Þ0 cases should be treated separately. A general expres
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PRE 62 2581ELECTROSTATIC INTERACTION BETWEEN LONG, . . .
for the interaction energy atc50 was derived in Ref.@27#. It
is also recovered here in the Appendix@Eq. ~A52!#. For he-
lices with surface charge patterns given by Eq.~6!, the en-
ergy density takes the form

Eint

L
'

8p2s0
2

«s
(

n52`

`

~21!n@p~ng!#2

3
cos@n~Df2gDz!#K0~knR!

kn
2@Kn8~kna!#2 , ~15!

in an electrolyte solution and

Eint

L
5

8p2s0
2a2

« (
n52`

`

~21!n@p~ng!#2

3cos@n~Df2gDz!#K0~ unguR!I n
2~ ungua! ~16!

in a nonpolar medium. HereDz5z22z1 , Df5f22f1 .

C. Interaction modes

Although they may seem to be cumbersome, Eqs.~9!–
~16! are easy to use. Indeed, it follows from Eqs.~9!, ~13!,
~15!, and~16! that the total interaction energy can be rep
sented as a sum of contributions from ‘‘interaction mode
with different indicesn andm. Only a few modes with smal
indices give significant contributions to the total energy. T
sum of modes rapidly converges because of the expone
dependence of the energy of each mode onn andm. Unless
p(ng) is zero or anomalously small because of a pecu
symmetry of the charge pattern, the sum can be trunc
after only a few terms withn,mÞ0. The truncated expres
sions allow us to conduct fairly detailed analysis of the
teraction laws, as well as to perform rapid numerical cal
lation.

For instance, for homogeneously charged cylinderss̄
5s0 andp(q)5dq,0 . After substituting this into Eq.~9! we
arrive at the classical result@17,18,48#

Eint'
8p3s̄2

«sk
3K1

2~ka!

e2kR

usincu
. ~17!

When applied to helical maeromolecules, such an appr
mation accounts for just a fraction of the net interaction
ergy. Most importantly, it neglects the chiral nature of he
ces and, therefore, chiral interactions.

For helices, the zero mode is simply the contribution fro
the average surface charge densitys̄. Chiral interactions are
determined by other, ‘‘helical’’ modes withn,mÞ0. Not
only are the helical modes responsible for the chirality,
they often give a dominant contribution to the net energy
particular, net-neutral molecules contain equal numbers
negatively and positively charged surface residues so
s̄50 while s0Þ0. Then, the interaction energy is dete
mined exclusively by the helical modes. Molecules with hi
surface density of intrinsic charged residues of one s
~such as DNA! cause adsorption and/or condensation
counterions resulting inus̄u!us0u. As a result, ‘‘helical’’
-
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modes may contribute more to the interaction energy t
the zero mode~at surface separations smaller than the heli
pitch!.

IV. INTERACTION BETWEEN INFINITELY
LONG HELICES

A. Interaction between idealizedB-DNA-like helices

First, let us illustrate the general formulas with a heuris
model of interaction betweenB-DNA-like helices. We exag-
gerate the rigidity, homogeneity, and length of DNA a
assume that the molecules are perfect, infinitely long helic
To emphasize nontrivial features of their chiral interactio
we select a peculiar~but not impossible! surface charge pat
tern, i.e., f 150.4, f 250.6, f 350, andu50.8 in Eq.~8!. In
Sec. VI, we discuss observed phenomena using a mode
150 bp DNA fragments with surface charge patterns
pected to be more common.

Several energy landscapes calculated from Eq.~9! within
these assumptions are shown in Fig. 3. The energy is a f
tion of six variables: interaxial separationR, interaxial angle
c, angles of rotation about molecular axisf1 and f2 , and
axial shiftsz1 and z2 . It is plotted at two different surface
separations: one slightly larger than the Debye length~R
527 Å, lD57 Å, R22a'9 Å, @49#! and the other slightly
larger than 2lD(R535 Å). Each landscape shows the e
ergy as a function ofc andDf5f22f1 at z15z250 ~i.e.,
when two very long molecules cross in the middle!. The
selected values off1 correspond to three most representat
cases that differ in the location of the point of closest a
proach between the molecules with respect to strands
grooves on molecule 1. Specifically the point of the clos
approach on molecule 1 is located in the center of the mi
groove atf150, on one of the phosphate strands atf1
'0.4p, and in the center of the major groove atf15p ~see
Fig. 2!.

Numerical summation of the terms in Eq.~9! confirms our
expectation of rapid convergence of the sums. We find t
only the modes withn,m50,61,62 are important. The
modes of interaction with larger indices introduce minor c
rections to the energy and they can be neglected.

The energy landscapes contain deep ‘‘canyons,’’ shal
‘‘lakes,’’ ‘‘ridges,’’ ‘‘overpasses,’’ and steep ‘‘mountains.’’
The interaction may be energetically favorable (Eint,0) or
unfavorable (Eint.0) depending on the specific alignment
the molecules and on the interaxial separation. The poin
plotting all these landscapes is to demonstrate the rich v
ety of their features. This richness suggests that the inte
tion may not be reducible to simple Hamiltonians used
phenomenological models of chiral interactions.

B. Interaction at large separations

Details of the energy landscapes shown in Fig. 3
model specific, but the interaction also has universal featu
common for all helices. To gain an insight into such featur
it is instructive to consider the interaction in a simple lim
ing case of small interaxial angles (usincu!1) and large sur-
face separations (R22a@lD). At usincu!1, only n5m
terms contribute to the sum in Eq.~9! since wn,m(c)unÞm
@1 and wn,n(c)!1. When, in addition,k(R22a)@1 all
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FIG. 3. ~Color! Energy landscapes for interaction between two crossedB-DNA-like helices plotted as a function of the interaxial ang
c and the difference in about-axis-rotation anglesf2–f1 for indicated values off1 andR. The energy is given in the units of thermal ener
~kBT'4.1310214 erg'0.025 eV atT5300 K!. For infinitely long molecules it diverges as;1/usincu at small interaxial angles because
the increasing effective interaction length~Sec. V A!. For finite-length molecules, the divergence levels off. Here, it is cut off from
landscapes by limiting the energy scale. To improve visual perception, the landscapes are shown forc varying from 0 top. Because of
molecular symmetry, the (f1 ,2c) alignment of molecule 1 is equivalent to (2p2f1 ,p2c); e.g.,2c is equivalent top2c at f150 and
at f15p.
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modes except those withn5m50 andn5m561 can be
neglected@50#. After expanding the energy at smallucu, we
find

«sk
3K1

2~ka!

8p3s0
2 Eint

'F s̄2

s0
22C cos~Df2gDz!e2~k12k!RGe2kR

1

ucu

2
Cg

k1
cos~Df2gDz!e2k1R

c

ucu

1
Cg2

8k1
2 cos~Df2gDz!~k1R23!e2k1Rucu1...,

~18!

wheres̄ is the average surface charge density@see Eq.~5!#
and

C52@p~g!#2
k3K1

2~ka!

k1
3@K18~k1a!#2 . ~19!

It follows from Eq.~18! that the most energetically favor
able axial alignment between the molecules isDf5gDz,
regardless of the interaxial angle. At this optimal alignme
the molecular opposition may be energetically favora
(Eint,0) or unfavorable (Eint.0), depending on the ratio
s̄/s0 and on the surface separation between molecules.

At us̄u.uscu, where@51#

sc5s0ACe2~k12k!a, ~20!

the interaction is energetically unfavorable at zero and
small angle. The energy decreases with increasing intera
angle.

Whenus̄u,uscu, the interaction is more complicated. It
energetically favorable atR,Rc , where

Rc52a1~k12k!21lnFsc
2

s̄2G . ~21!

Within this distance range, the most favorable interax
angle isc50. The molecules ‘‘recognize’’ each other an
tend to aggregate in a conformation with parallel long a
even when both molecules have nonzero mean sur
charge density. This increases the effective length of the
ergetically favorable molecular opposition. The attraction
due to axial charge separation. The latter allows such al
ment of two helices that oppositely charged surface gro
face each other, as discussed previously in the theory o
teraction between parallel helices@27,30#. At us̄u→0, Rc
→`.

At R.Rc but R2Rc!Rc , the interaction is energeticall
unfavorable at parallel alignment (c50), but a small twist
makes it favorable. The optimal angle is
t,
e

y
ial

l

s
ce
n-
s
n-
s

n-

c'
2k1

g
A2@e~k12k!~R2Rc!21#

~k1R23!
. ~22!

It increases with increasing separation. At largerR, the opti-
mal interaxial angle goes outside of the range of the sm
angle approximation. The dependence of the optimal an
on R in the vicinity of Rc is shown in Fig. 4.

Thus, helices tend to align parallel when they attract e
other. They tend to cross atc;p/2 when they repel each
other. This is something one would expect for any lon
rod-like molecules. Such behavior was also predicted for
mogeneously charged rods whose attraction was due to
related surface charge density fluctuations@19#. The non-
trivial conclusions of the present study are the following:~a!
As a result of the helical surface charge pattern, two m
ecules can attract each other and aggregate in parallel
formation even when they have nonzero net charges of
same sign. We first described this in Refs.@27,30#. ~b! The
transition betweenc50 andc;p/2 upon the loss of attrac
tion occurs gradually rather than as a jump~Fig. 4!. A small
twist extends the range of intermolecular attraction.~c! At
small interaxial angles, chirality of helices affects the dire
tion but not the amplitudeof the most favorable twist. In-
deed, the only term in Eq.~18! that depends on the sign ofc
does not depend on the amplitude ofc.

V. INTERACTION BETWEEN HELICES
OF FINITE LENGTH

There are no infinitely long helices in real life. Below w
use a simple approximation of long (L/H@1) helices to ex-
tend the theory to the case of interaction between molec
of finite length. We consider only a straightforward exte
sion that can be done atc50 and atLc larger than other
relevant length scales, e.g.,R, lD , H. Despite its limitations,
this approach allows us to arrive at a number of interest
conclusions. A more general theory for all interaxial ang

FIG. 4. The dependence of the most energetically favorable
teraxial angle on interaxial separation in the asymptotic limit
large separations and small angles. The nonzero interaxial a
emerges continuously after a critical distanceRc @see Eq.~22!#. The
value of Rc depends on the ratio between positive and nega
charges on molecular surface as described by Eq.~21!. The stronger
the charge compensation, the largerRc .
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is a hard mathematical problem which is currently under
vestigation.

A. Effective interaction length

Consider a simple argument schematically illustrated
Fig. 5. Eachnth harmonic of the surface charge density p
duces an electric field that decays away from the helix w
the characteristic lengthkn

21. The fields created by two
crossed infinitely long helices overlap over the leng
Ln(c);kn

21/usincu, as it follows immediately from the ge
ometry of the crossed configuration. Atusincu!1, the helices
are essentially parallel in the region of their overlap. The
fore, we should be able to represent the energy of their
teraction as

Eint5 (
n52`

`

Ln~c!un~c!, ~23!

whereun(c50) is the energy of interaction between paral
helices per unit of their length.

Comparing Eq.~9! with Eq. ~15! we find that the expres
sion for Eint at smallc can be rewritten in the form of Eq
~23!, where

FIG. 5. Schematic illustration of interaction between tw
crossed, long molecules of finite lengthL in projection on the~y,z!
plane ~see Fig. 1!. Here the molecules are represented by so
black lines, while light gray shading symbolizes electric fiel
around them. The region shaded in dark gray symbolizes ener
cally significant overlap between the electric fields. Since eachnth
harmonic of the charge distribution on helical surface produces
electric field that decays exponentially away from the helix with
characteristic decay lengthkn

21, the length of the overlap region fo
each mode is;kn

21/usincu. This is the ‘‘effective interaction
length’’ for the mode. Only a few modes contribute significantly
the interaction. The tips of helices do not contribute much to
interaction when they protrude beyond the overlap region for
essential modes~as shown!. Then, the interaction energy can b
calculated assuming that the helices are infinitely long. In the
posite limit of much smaller angles, the helices are effectively p
allel.
-

n
-
h

-
-

l

un~c!

'~21!n
8p2s0

2

«s

@p~ng!#2 cos@n~Df2gDz!#K0~knR!

kn
2@Kn8~kna!#2

3F11n2
g sinc

kn
2~knR1124n2!

n2g2 sin2 c

8kn
2 1•••G

~24!

and theeffective interaction lengthfor each moden is given
by

Ln~cÞ0!5
kn

21

usincu
pe2knR

K0~knR!
. ~25!

These expressions apply also to helices of finite lengt
molecular tips protrude beyond the area of energetically
nificant overlap between the electric fields, as shown in F
5. Then the contribution of the tips to the interaction ener
can be neglected. Since the length of the overlap area
each mode isLn(c), this approximation should work whe
L.Ln(c) for all essential modes. Taking into account th
L0(c) is the largest of allLn , we find that Eqs.~23!–~25!
are applicable to helices of finite length atucu.c0 , where
c0'A2pR/k/L is the root of equationLn(c)5L. To obtain
this expression from Eq.~25!, we replacedusincu by ucu and
used the asymptotic expansion ofK0(x) assuming thatkR
@1, which is typically the case.

Furthermore, Eqs.~23! and ~24! also describe the energ
of interaction between parallel (c50) helices of large finite
lengthL(L@H) if we adopt

FIG. 6. Contribution of different modes to the energy of inte
action between two parallel (c50), 150-bp DNA helices atu
50.75. EachEn is the sum of the energies of two modes wi
indices6n. Relative contributions of different modes to the inte
action energy at smallcÞ0 are practically the same as atc50, as
follows from Eq. ~24!. The energy of modes withn563 is not
shown since it is indistinguishable from zero at the energy sc
used on the graph.
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Ln~c50!5L. ~26!

Indeed, two helices can be viewed as effectively parallel o
their whole length whenL!Ln(c) for all essential modes.

Thus, we can use Eqs.~23!–~26! for finite length helices
as long asL@H and ucu!cN or ucu.c0 . Here N is the
largest mode index that still contributes significantly to t
interaction energy~e.g., N52 for interaction between
B-DNA helices, see Fig. 6! and

cn'
p

Lkn

e2knR

K0~knR!
'

A2pR/kn

L
. ~27!

The intermediate case ofucu;cn is more complicated. Its
rigorous analysis requires a full, explicit solution for the e
ergy of interaction between crossed helices of finite lengt
all interaxial angles. This is still an unsolved mathemati
problem currently under consideration.

B. Intermolecular torque

It was proposed that to understand the macroscopic p
of a cholesteric phase formed by long, chiral molecules i
sufficient to know the intermolecular torque atc50 @14,15#.
This rests on the assumption that the torque is a regu
smooth function ofc at smallc. Let us now calculate the
torque between two helices and see whether our results
port such an assumption.

At c50, we find from Eqs.~24! and ~26! that the inter-
molecular torque is

t52
dEint

dc

'2
16p2s0

2

«s
Lg(

n51

`

~21!nn2@p~ng!#2

3
cos@n~Df2gDz!#K0~knR!

kn
3@Kn8~kna!#2 . ~28!

As we would expect, the torque changes the sign upon
version of helical handedness~g.0 for right-handed andg
,0 for left-handed helices!. This torque tends to twist heli
ces out of parallel alignment.

At c0,ucu!1, we obtain from Eqs.~24! and ~25!

FIG. 7. Schematic illustration of a right-handed choleste
phase.~Right! Mutual alignment of molecules in two neighborin
layers in the cholesteric phase. Molecules in the bottom layer
shown in gray while molecules in the top layer are shown in bla
r

-
at
l

h
s

r,

p-

n-

t'
c

ucu3
8p3s0

2

«s
(

n52`

`

~21!n@p~ng!#2

3
cos@n~Df2gDz!#e2knR

kn
3@Kn8~kna!#2 . ~29!

An extrapolation of Eq.~29! to c50 yields a diverging
torque instead of Eq.~28!. We illustrate possible conse
quences of such behavior below on the example of the ch
phase formed by 150 base-pair-long DNA helices.

VI. ON THE ORIGIN AND STRUCTURE
OF THE CHOLESTERIC PHASE FORMED

BY B-DNA MOLECULES

As we discussed in Sec. II C, the model ofB-DNA as a
rigid rod with helical surface charge distribution@Eq. ~8!#
should be reasonably accurate for describing electrostatic
teractions between molecules whose total length is la
compared to the helical pitch but smaller or equal to
persistence length. This applies to 150 base pair fragmen
B-DNA molecules whose length is;500 Å. The phase
behavior of concentrated solutions of such fragments w
extensively studied experimentally@2,3,5,6,52,53#. Most of
the studies were performed in;0.1–0.3 M NaCl or NH4Cl
(lD;5 – 10 Å, u'0.75 @54#!.

The observed sequence of phases upon increasing w
content ~increasing interaxial separation,R! is: ~1! a non-
chiral, hexagonal@55,56# phase atR,32 Å, ~2! a chiral,
cholesteric phase atR from 32 to 49 Å, and~3! an isotropic
phase atR.49 Å @2,52#. The averaged structure of the ch
lesteric phase can be represented by a helically twisted s
of layers, each formed by parallel molecules~Fig. 7!. The
twist angle between adjacent layers is 0.3°–3° producin
very large cholesteric pitchP;0.4– 5mm @5,6,10#. Because
of the small twist angle, the packing of nearest neighb
molecules in the cholesteric phase is almost hexagonal.

Ideally, in order to build a molecular theory of the ch
lesteric phase, one should solve a statistical many body p
lem using potentials of intermolecular forces and taking in
account molecular motions~rotation about the prinicpal axes
axial translation, fluctuations of the interaxial angle, etc!.
This is a hard, yet unsolved problem. However, we can try
get a glimpse at the underlying physics via a qualitat
analysis of the contributing forces, torques, and motions
described below.

A. Thermal motions

The cholesteric arrangement of molecules is produced
a chiral torque~see, e.g., Ref.@15#!. From osmotic stress
measurements, we know that intermolecular interactions
the cholesteric phase of DNA are dominated by electrost
forces@57#. We, therefore, assume that the torque has e
trostatic origin as well@58#. Equations~28! and~29! describe
the electrostatic torque at a fixed mutual alignment of m
ecules, i.e., in the absence of any molecular motions. F
these expressions, one can see that thermal rotations of
ecules about their principle axes and translations along
axes may have a profound effect on the average torque.
instance, chiral components of the torque can be comple

re
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wiped out if such thermal motions of neighboring molecu
are not correlated. Knowledge of the strength of the co
sponding correlations is therefore critical for understand
the cholesteric phase.

It is generally accepted that cholesteric phases exh
long-range orientational order of molecules and short-ra
positional order@59#. It is also often presumed that mo
ecules can almost freely rotate about their principle a
@60#. However, there is no experimental evidence that
latter is true for DNA. Furthermore, theoretical estimates
vor an opposite picture. From Eqs.~23!–~26!, we find that
the energetic cost of rotation~df! of a molecule surrounded
by six nearest neighbors is;B(R)cos(df) where B(R)
548p2Ls0

2k1
22@K18(k1a)#22«s

21K0(k1R). In the middle of
the range of existence of the cholesteric phase (R'40 Å),
we findB;5kBT for 150 bp long DNA. The cost of molecu
lar rotation is quite high, suggesting that correlations in
mutual alignment of nearest neighbors should be ra
strong.

Similarly, the cost of an axial shift (dz) of a molecule at
constantf is ;B(R)cos(gdz), whereB(R) is the same as
above, i.e., this motion should also be strongly hinder
However, a screw motion (df5gdz) with a relatively small
axial amplitude (dz!L) can proceed at almost no energe
cost @61#. Such motion does not affect mutual alignment
charge patterns on neighbor molecules~except for small
edge effects!. Therefore, the corresponding thermal exci
tions have no effect on the torques calculated above. H
ever, these motions do change physical positions of m
ecules relative to each other.

In addition to about-principal-axis rotations and ax
translations, intermolecular interactions may be affected
fluctuations of the interaxial distance, e.g., due to DNA u
dulations@62#. Such fluctuations double the decay length
the electrostatic interaction@63#. As a result, they should
increase the effective value ofB(R) and hinder thermal ro-
tations and translations even further. However, they sho
not have a significant effect on the relative balance of torq
because they do not change the (Df,Dz) alignment@62#.

Using the above estimates as a guide, we assume
torques responsible for the cholesteric arrangement of D
can be calculated in the ‘‘ground state’’ approximation f
the mutual alignment of charge patterns on nearest neig
molecules. Hindered thermal rotations and axial translati
that disrupt the alignment introduce only minor correctio
except near the edge of the existence of the phase. How
this relatively rigid alignment of charge patterns on near
neighbor molecules coexists with virtually unhindered, ind
pendent screw motions of each molecule and, therefore,
the absence of long-range positional order in the phase
the absence of better data or a more detailed theory, this
logical assumption that we use in further analysis of the b
ance of forces and torques.

B. Pairwise additivity and many-body effects

As we mentioned in Sec. II, here we consider only ‘‘fr
zen’’ surface charge patterns postponing analysis of poss
effects of surface charge density fluctuations until later st
ies. Then, taking into account that electrostatic potentials
additive, we can find the ensemble energy by adding up
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ergies of interaction of all pairs of DNA molecules. Furthe
more, because surface separation between any two mole
in the cholesteric phase exceeds the Debye length and
cause the interaction energy exponentially decreases with
separation we can consider only interactions between nea
neighbors.

Despite the additivity of pair interaction potentials, th
dependence of the energy on mutual alignment of molec
may introduce many-body effects. Consider, for instance,
teraction between three nearest neighbor molecules. The
ergy of interaction between each pair of themn, m
(51,2,3) depends on their mutual alignment (Df
2gDz)n,m @see Eq.~24!#. The many-body effects are due t
the relationship between (Df2gDz)n,m that has the form

~Df2gDz!1,35~Df2gDz!1,22~Df2gDz!2,3. ~30!

The cholesteric twist between adjacent molecular lay
would have lead to even more complex many-body effect
a molecule in one layer crossed with more than one molec
in the preceding layer. However, there are no such mult
crossings in the cholesteric phase ofB-DNA. At typical twist
angles c<3°, a molecule traverses the distanceLusincu
,25 Å across the adjacent layer that is less than the in
axial distance (R.32 Å) in the layer~Fig. 7!.

C. Force and torque balance

Consider the balance of forces and torques in the cho
teric phase. First of all, note that only interaction modes w
n5m50,61,62 are important atR;32– 49 Å ~see Fig. 6!.
Each mode has a characteristic interaxial anglecn which
determines the upper boundary of the crossover region w
intermolecular torque rapidly changes its behavior~Sec.
V B!. From Eq.~27!, we find that forB-DNA c0'5°, c61
'4°, andc62'3°. The angles observed in the choleste
phase~0.3°–3°! thus lie exactly in the crossover region. B
low we show that this may not be a coincidence.

At ucu!c2 , the molecules are effectively parallel an
their local packing can be approximated by a hexagonal
ray. At such small angles, the energy of intermolecular int
action and the torque between molecular layers can be
culated in the limit of c→0. The interaction energy is
determined primarily by the mode withn50, but this mode
is not chiral. From symmetry, nonchiral modes cannot p
duce a torque atc50. Thus, the net torque in this range
chiral and it is determined by the modes withn561,62.
From Eqs.~8! and~28!, we find the average interlayer torqu
per molecule,

^t&'
8p2A6pLgs0

2e2k1R

«sk1
3Ak1R@K18~k1a!#2

3H ^cos@~Df2gDz!n,m#&@~ f 22 f 1!u1cos~f̃s!#
2

14^cos@2~Df2gDz!n,m#&@~ f 21 f 1!u2cos~2f̃s!#
2

3
k1

7/2@K18~k1a!#2

k2
7/2@K28~k2a!#2 e2~k22k1!RJ , ~31!
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where^ & indicates averaging over alignment between nea
neighbor moleculesn and m. In deriving Eq.~31!, we as-
sumed thatf 350 ~all counterions are located in the groove!
and used the asymptotic expansion ofK0(knR) at knR@1.
This chiral torque is the driving force for formation of th
cholesteric phase. It tends to establish either right-hande
left-handed twist between molecular layers depending on
average molecular alignment and on the partition of coun
rions between the grooves.

At ucu.c1 , tips of the molecules are separated by a s
ficient distance so that the change in the effective interac
length ~Fig. 5! becomes the main source of the ener
change withc ~see Sec. V A!. As a result, the torque is
determined by the mode that gives the dominant contribu
to the energy, i.e., by the repulsion between unbalan
charges on molecular surfaces~n50 mode!. The intermo-
lecular interaction becomes essentially the same as betw
homogeneously charged rods that tend to have parallel
entation and pack into hexagonal lattice because this
creases average separation between molecular surfaces
net torque becomes predominantly nonchiral and it favo
decrease inucu, as described by Eq.~29!.

The competition between the chiral torque~dominant at
ucu!c2! and the nonchiral torque~dominant atucu.c1!
produces a nonzero equilibrium interaxial angleucequ some-
where in the crossover region. To determine the exact va
of ucequ, one needs to know the full angular dependence
intermolecular torque. As we noted in Sec. V A, calculati
of the interaction energy in the crossover region is still
unsolved mathematical problem. We, therefore, do not kn
the exact position of the optimum angle, the energy dept
the minimum, and the energy profile around the minimu
However, even without knowing the exact answer to th
questions, we can estimate the cholesteric pitch as follow

D. Cholesteric pitch

The cholesteric pitch~P! is related to ucequ as P
5)pR/ucequ @64#. Sinceucequ,c1 , the pitch of the choles-
teric phase should be larger than)pRmin /c1, whereRmin is
the smallest interaxial separation between helices in the
lesteric phase. Sinceucequ is not much smaller thanc2 , we
assume thatucequ andc2 have the same order of magnitud
or ucequ.0.1c2 . Therefore, we can expect)pRmin /c1
,P,10)pRmax/c2, where Rmax is the largest interaxia
separation between helices in the cholesteric phase.

Using Rmin'32 Å and Rmax'49 Å @52#, H'34 Å, L
'500 Å, andlD'5 – 10 Å, we obtain the expected chole
teric pitch 0.3mm,P,7 mm. This is exactly the range ob
served in experiments. If the agreement is not a coincide
it confirms that thermal rotations of molecules about th
principal axes are not significant in the cholesteric phase
DNA. Such rotations would significantly reduce the streng
of chiral interaction, resulting in a much larger choleste
pitch. At least at this level, our model appears to be s
consistent.

E. Alignment frustration and cholesteric-to-hexagonal
phase transition

It follows from Eq.~31! that the average chiral torque ha
a nonzero value only when molecular alignment is not r
st
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dom, i.e.,^cos@(Df2gDz)n,m#&Þ0. At random alignment the
molecules are rotated about their principle axes by rand
angles so that the average molecular symmetry and ave
electrostatic interactions become effectively uniaxial@14,65#.
The chiral cholesteric phase cannot be formed as a resu
uniaxial interactions that are always nonchiral@15,59#.
Therefore, correlations in molecular alignment of helic
play a critical role in the cholesteric phase formation.

The ability of pairs of adjacent molecules to preserve th
mutual alignment in a multimolecular environment depen
on whether their optimal~most energetically favorable! pair-
wise alignment is compatible with the packing symmetry
their neighbors. Since packing of nearest neighbor DNA
the cholesteric phase is almost hexagonal, we find from
~30! that only (Df2gDz)50 and (Df2gDz)562p/3
can be simultaneously optimal for all pairs of molecules.

The optimal alignment for a pair of opposing molecul
can be determined by minimizing the energy given by E
~23! and ~24! with respect to (Df2gDz). Taking into ac-
count only the modes withunu<2, we find that (Df
2gDz)562p/3 is energetically unfavorable for any mo
lecular pair while (Df2gDz)50 is optimal only for pairs
of molecules whose axes are separated byR>R* , where

R* '
1

k22k1

3 lnH 4@~ f 21 f 1!u2cos~2f̃s!#
2@K18~k1a!#2k1

5/2

@~ f 22 f 1!u1cos~f̃s!#
2@K28~k2a!#2k2

5/2 J .

~32!

At R,R* , the optimal value of (Df2gDz) gradually in-
creases with decreasingR.

Nonzero optimal (Df2gDz) for molecular pairs would
result in nonoptimal average alignment of at least some p
of nearest neighbor molecules in the cholesteric phase, c
ing an alignment frustration. The frustration may be resolv
by an alignment that is not optimal for some or all pairs b
that is still more energetically favorable than random alig
ment. If the energetic advantage of such structure is su
cient to compete with the entropic advantage of rand
alignment one may expect chiral interactions and the cho
teric phase to be preserved. If it is not, one may expec
transition to nonchiral hexagonal packing.

We initially derived an expression similar to Eq.~32! in
Ref. @27# for two parallel double helices with randomly dis
tributed condensed counterions. We pointed out that
value of R* is close to the observed transition point fro
cholesteric to hexagonal packing in DNA assemblies a
speculated that this may not be a coincidence. This idea
further developed in Ref.@12# whose authors were first to
suggest that the cholesteric-to-hexagonal transition aR
'32 Å and the absence of any twist in the hexagonal~line
hexatic! phase may be caused by the alignment frustrati
The validity of this interpretation still awaits its confirmatio
by a statistical theory of multimolecular aggregates based
the molecular interaction potential.

In the absence of such theory, we can only continue
speculate that the transition is expected to occur somew
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at R<R* when the pairwise alignment with (Df
2gDz)n,m50 becomes nonoptimal. The dependence ofR*
on the partitioning of counterions between DNA grooves
illustrated in Fig. 8~a!. For instance, at equal partitionin
( f 15 f 250.5) andlD'7 Å, we find R* '37 Å. This is in
good agreement with the experimental observation that
cholesteric-to-hexagonal transition occurs atR'32 Å.

F. The sense of cholesteric twist

Intuitively, one expects a cholesteric phase formed
right-handed helices to have a right-handed cholesteric tw
The standard argument is illustrated in Fig. 9. In agreem
with this intuitive expectation, Eq.~31! predicts a positive
torque and, therefore, a right handed cholesteric twist aR
>R* when the optimal alignment of all molecular pairs
(Df2gDz)50.

FIG. 8. Chiral torque between adjacent molecular layers in
cholesteric phase of 150-bp DNA atucu!c2(3°) atfixed alignment
of nearest neighbor molecules (Df2gDz)n,m50. ~a! Dependence

of R* , R
*
8 , and R̃* on the ratio of ions in the minor and majo

grooves (f 1 / f 2). At R,R* , the alignment withDf2gDz50 be-
comes nonoptimal for individual pairs of molecules. AtR,R

*
8 , the

alignment with Df2gDz50 becomes energetically unfavorab

compared to random alignment. AtR5R̃* , the average torque
changes its sign.~b! Dependence of the average torque~normalized
per one molecule! on interaxial distance atf 1 / f 251.

FIG. 9. Molecular alignment at right-handed~a! and left-handed
~b! cholesteric twist. The front molecule is painted black while t
back molecule is painted gray. Note that right-handed twist allo
the front molecule to fit its helical strands in the middle of t
groove on the opposing surface. In contrast, left-handed twist
sults in strands crossing each other. Intuitively, for single-strand
right-handed helices~such as shown! the right-handed cholesteri
twist should be more energetically favorable both for electrost
and steric reasons. One may expect this trend to be preserve
double-stranded helices such as DNA, but the geometry of inte
tion between double-stranded helices is more complicated. A
result, an inversion of the torque direction becomes possible.
s

e

y
t.

nt

However, a counterintuitive torque behavior is possible
R,R* . Consider, e.g., the behavior of the torque defined
Eq. ~31! upon decreasingR at fixed pairwise alignmen
(Df2gDz)50 @Fig. 8~b!#. At first the torque is positive,
but it changes its sign and becomes negative atR,R̃* ,
where

R̃* 'R* 2
ln~k2 /k1!

k22k1
. ~33!

This occurs while (Df2gDz)50 is still more energetically
favorable than random alignment of nearest neighbor m
ecules. It follows from Eqs.~23! and ~24! that the random
alignment becomes more favorable atR,R

*
8 , where

R
*
8 'R* 2

ln~4!

~k22k1!
. ~34!

Since ln(k2 /k1)50.5 ln@(k214g2)/(k21g2)#,ln(4) we find
that R

*
8 ,R̃* @Fig. 8~a!#.

Thus, a change in the interlayer torque sign from posit
to negative and the corresponding inversion of the cho
teric twist sense from right-handed to left-handed is, in pr
ciple, possible in a small interval of interaxial distances.
other words, the twist sense is not uniquely defined by
handedness of the molecules. It may also depend on the
lesteric phase density and on intricate details of charge
terns on molecular surfaces.

This simplified example, however, is intended only
bring up the issue. As discussed above, pairwise alignm
of DNA becomes frustrated atR,R* and it may signifi-
cantly deviate from (Df2gDz)50 without becoming ran-
dom. The true prediction of the twist sense within our mod
requires a much more complicated many-body calculation
frustrated pairwise alignment which is beyond the scope
the present work.

Experimentally, the twist sense of cholesteric aggrega
of DNA was studied by circular dichroism~CD! in the ab-
sorption band of DNA base pairs~;260 nm! @66#. Anoma-
lously strong, negative CD spectra measured in these exp
ments were attributed to the left-handed cholesteric tw
Such interpretation is, however, debatable@67#. Neverthe-
less, if the left-handed twist is not an experimental artifa
@68#, the possibility of the cholesteric twist sense inversi
may provide a clue to explaining this counterintuitive obs
vation.

VII. CONCLUSIONS

This work is a first step toward a semimicroscopic theo
of chiral liquid crystalline phases formed by charged, heli
macromolecules. Here we report a closed form, explicit
pression for a chiral interaction potential between two rig
helices at arbitrary, fixed mutual orientations. This ba
‘‘ground state’’ pair potential has a complex landscape~Fig.
3! and a number of nontrivial features. Understanding
these features is essential for developing a future statis
theory that would account for thermal motions and man
body effects. As an illustration of possible manifestations
pair potential features in real phenomena, we attemp
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qualitatively rationalize some of the observed properties
cholesteric aggregates of DNA.

Probably the most nontrivial feature of the potential is t
following. At small interaxial anglesc (usincu!1), the chiral
contribution to the energy of interaction between twoinfi-
nitely long helices depends onc as sinc/usincu, i.e., it de-
pends on the direction but not on the amplitude of the tw
This is not true for the interaction between two helices
finite length: The molecular length plays a critical role in th
force balance.

Our estimates~Sec. VI E and VI D! suggest that the effec
of molecular length may be the key to understanding
origin of the large pitchP;0.4– 5mm observed in choles
teric aggregates of 150 bp long DNA fragmentsL
;500 Å) @5,6,10#. The interaxial angle between helices
adjacent layers favored by the bare potential correspond
the cholesteric pitch fromPmin'LA3pRmink1/2'0.3mm to
Pmax;10LA3pRmaxk2/2'7 mm. Here Rmin'32 Å and
Rmax'49 Å are the minimal and maximal interaxial sepa
tions between nearest neighbor helices in the choles
phase andk1'0.5 Å21 andk2'0.9 Å21 are defined by Eq.
~11!.

Although conformational and positional disorder may
fect intermolecular interactions, the agreement between
experimental data and the value of the pitch, estimated on
basis of interaction between immobile helices, is proba
not a coincidence. Molecular motions that are expected
disrupt chiral interactions are rotations about the princi
axis and axial translations. However, evaluation of their
ergetic cost suggests that such motions should have s
amplitudes~see Sec. VI A!. Bending fluctuations are ex
pected to hinder the rotation and axial translation even
ther without a direct effect on the relative balance betwe
chiral and nonchiral torques. The only unhindered motion
the cholesteric phase seems to be a screw-like a
translation-plus-rotation that does not change the alignm
of charged strands on opposing molecules. It could be
sponsible for the elimination of long-range positional ord
but it should not affect intermolecular forces, except for m
nor ‘‘edge effects’’ associated with translation of molecu
tips. Thus, we expect it to have only a minor~if any! effect
on the cholesteric pitch. It is, therefore, conceivable t
long-range positional disorder may coexist with strong alig
ment of nearest neighbor molecules whose effective inte
tion is described by a weakly perturbed ground state po
tial.

The stability of the nearest neighbor alignment depe
on average interaxial separation in the cholesteric phase
large separations, the energetic cost of about-principal-
rotations and axial translations decreases. Notably,
boundary of the existence of the cholesteric phaseR
'49 Å) coincides with the separation at which the height
the barriers preventing about-principal-axis rotations redu
to 0.5–1kBT. At small separations,R,R* 530– 40 Å @Fig.
8~a!#, optimal alignment of nearest neighbor pairs becom
incompatible with the locally hexagonal symmetry of t
cholesteric phase~see Sec. VI E!. Such alignment frustration
is also likely to reduce the cost of about-principal-axis ro
tions. This may explain the loss of chiral interactions at sm
distances and the cholesteric-hexagonal transition in DNA
R'32 Å @12,27#.
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Finally, the pair potential suggests that the sense of
cholesteric twist may be determined not only by the hand
ness of molecules in the aggregate, but also by counte
adsorption pattern and by interaxial separation between h
ces. As a result, an inversion of the cholesteric twist in DN
assemblies~from right-handed at large separations to le
handed at small separations! may occur@Fig. 8~b!#. Such
inversion may explain the left-handed twist in DNA aggr
gates deduced@66# from anomalously strong, negative circu
lar dichroism spectra of polymer-salt-induced DNA agg
gates~see Sec. VI F!.

The agreement between the estimates based on the
interaction potential and experiments indicates that we m
be on the right track to understanding the complex physic
chiral aggregates of charged, helical macromolecules. H
ever, the final verdict requires a rigorous many-body sta
tical theory which is still to be worked out.

ACKNOWLEDGMENTS

The authors are grateful to Yu. M. Evdokimov, P.-
Hansen, M. Fixman, A. R. Khokhlov, A. J. Liu, T. C. Luben
sky, S. Malinin, V. A. Parsegian, R. Podgornik, and D.
Rau for useful discussions. A part of this work was pe
formed within the program on ‘‘Electrostatic Effects i
Complex Fluids and Biophysics’’ at the Institute for The
retical Physics, University of California at Santa Barba
~ITP!. We are grateful to the organizers—W. M. Gelbart,
A. Parsegian, and P. Pincus—for the invitation to this p
gram, the ITP staff for hospitality, and we acknowledge t
National Science Foundation, Grant No. PHY94-0719
which made our participation possible. A.A.K. also appre
ates support of this work by the Deutsche Forschungs
meinschaft, Grant No. KO 1391/4-1, and the financial su
port of his regular visits to Bethesda by the National Institu
of Child Health and Human Development, NIH.

APPENDIX: CALCULATION OF PAIR
INTERACTION POTENTIAL

1. Outline

Consider interaction between two infinitely long, rig
molecules with arbitrary surface charge patterns. The m
ecules may cross at an arbitrary anglec. The distance of the
closest approach between their axes isR. The molecules have
cylindrical inner cores with the same radiusa. The molecular
cores do not intersect (R.2a). We assume that fixed sur
face charges, adsorbed ions, and condensed counterions
the core/water interface~see Sec. II A!. The molecular con-
figuration and the coordinate systems we use to describ
are shown in Fig. 1.

We describe all charges at each core/water interface
plicitly by the charge densitiesrn(r ) defined in Cartesian
coordinates of the ‘‘laboratory’’ frame whosez axis coin-
cides with the long axis of molecule 2~Fig. 1!. To calculate
the electric field outside inner molecular cores, we use
standard method of induced surface charges.

Specifically, the Fourier transform of the electrostatic p
tential w(r ) is given by
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w̃~k!5 (
n51

2

G~k!@ r̃n~k!1 r̃n
ind~k!#. ~A1!

Here r̃n(k) and r̃n
ind(k) are the Fourier transforms ofrn(r )

and of the induced charge density, respectively.

G~k!5
4p

«s~k21k2!
~A2!

is the electrostatic Green’s function in thek space, k
5uku,k215lD is the Debye length, and«s is the solvent
~water! dielectric constant. The Fourier transform of a
function f (r ) is defined asf̃ (k)5(2p)23/2*d3r f (r )eikr .

Because of the cylindrical shape of inner molecular cor
it is convenient to describe the surface charge densitie
two separate ‘‘molecular’’ frames in cylindrical coordina
systems~z, f, r!, each associated with the correspondi
molecular axis~see Fig. 1!

rn~r !5rn~z,f,r !5sn~z,f!d~r 2a!. ~A3!

In the first order approximation, we truncate the summ
tion of consecutive images after the leading term. Then,
electrostatic interaction energy is given by

Eint'E d3k@ r̃1~k!1 r̃1,0
ind~k!#@ r̃2~2k!1 r̃2,0

ind~2k!#G~k!,

~A4!

where r̃n,0
ind(k) is the density of the induced charge on t

surface of the core of the moleculen in the absence of the
second molecule. This approximation is appropriate wh
the surface separation between molecules is larger than
Debye length. By recalculatingr̃n(k) and r̃n,0

ind(k) from
s̃n(q,n) we find an expression for the interaction energy
terms ofs̃n(q,n), as defined by Eq.~1!.

2. Fourier transforms of charge density

a. Molecule ‘‘2’’

The long axis of this molecule coincides withz axis of the
chosen Cartesian ‘‘laboratory frame’’~Fig. 1!. We can there-
fore use the expression derived in our previous work@27#

r̃2~k!1 r̃2
ind~k!5

a

~2p!1/2 (
m52`

`

i m

3~ s̃2~q,m!1s̃2
ind@q,m!#Jm~Ka!e2 imfK,

~A5!

where Jm(x)n is the Bessel function of the orderm. This
expression converts the Fourier transforms of the charge
sity from cylindrical coordinates~coaxial with the main axis
of the molecule! into the Cartesian coordinatesk
5(q,K,fK).

While we treat the surface density of fixed and adsorb
charges,s̃2(q,m), as known, the density of induced charge
s̃2

ind(q,m), is to be calculated. When the molecules are
too close to each other, the series of consecutive ima
rapidly converges. In the first order approximation, we m
s,
in

-
e

n
he

n-

d
,
t
es
y

replaces̃2
ind(q,m) by s̃2,0

ind(q,m), which is the surface density
of induced charges in the absence of molecule 1. To ca
late s̃2,0

ind(q,m), we first find the electrostatic potential cre
ated bys2 ands2,0

ind , as ifs2,0
ind were known. Then, we use th

continuity of the potential and of the normal component
electric induction at the inner-core/water interface to fi
s2,0

ind .
The electrostatic potential created by molecule 2 in

absence of molecule 1 is

w̃2~k!1w̃2,0
ind~k!5

2a~2p!1/2

«s~k21k2! (
m52`

`

i m

3@s̃2~q,m!1s̃2,0
ind~q,m!#Jm~Ka!e2 imfK.

~A6!

In cylindrical coordiantes

w2~z,f,r !1w2,0
ind~z,f,r !

5
a

p«s
E

2`

`

dqE
0

`

K dKE
0

2p

dfK

e2 iqze2 iKr cos~fK2fr !

~q21K21k2!

3 (
m52`

`

i m@s̃2~q,m!1s̃2,0
ind~q,m!#Jm~Ka!e2 imfK.

~A7!

The integration overfK gives

w̃2~q,m,r !1w̃2,0
ind~q,m,r !5

4pa

es
@s̃2~q,m!1s̃2,0

ind~q,m!#

3E
0

`

K dK
Jm~Ka!Jm~Kr !

~q21K21k2!
.

~A8!

Note that fixed and adsorbed charges are located atr 5a
10 while induced charges are located atr 5a20. The po-
tential inside this infinitesimally thin layer (a20,r ,a
10) is given by

w̃2~q,m,r !1w̃2,0
ind~q,m,r !5

4pa

«s
@s̃2~q,m!Km~ k̃qa!I m~ k̃qr !

1s̃2,0
ind~q,m!I m~ k̃qa!Km~ k̃qr !#,

~A9!
where

k̃q5Ak21q2. ~A10!

The potential inside the molecular core is a solution of
Poisson equation whose general form is

w̃2
core~q,m,r !5B~q,m!I m~ uqur !, ~A11!

whereB(q,m) is an integration constant. From continuity o
the potential at the core we find

B~q,m!5
4pa

«s
@s̃2~q,m!1s̃2,0

ind~q,m!#Km~ k̃qa!
I m~ k̃qa!

I m~ uqua!

~A12!
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and

w̃2
core~q,m,r !5

4pa

«s
@s̃2~q,m!1s̃2,0

ind~q,m!#

3Km~ k̃qa!
I m~ k̃qa!

I m~ uqua!
I m~ uqur !. ~A13!

The continuity of the normal component of electric inducti
gives

F]@w̃2~q,m,r !1w̃2,0
ind~q,m,r !#

]r G
r 5a

5
«c

«s
F]w̃2

core~q,m,r !

]r G
r 5a

,

~A14!

where«c and«s are the dielectric constants inside and o
side of molecular cores, respectively. After substituting E
~A9! and ~A13! into Eq. ~A14! we obtain@69#

@s̃2~q,m!1s̃2,0
ind~q,m!#

52
s̃2~q,m!

k̃qa@12b̃m~q!#I m~ k̃qa!Km8 ~ k̃qa!
,

~A15!

where

b̃m~q!5
«c

«s

uqu
k̃q

Km~ k̃qa!I m8 ~ uqua!

I m~ uqua!Km8 ~ k̃qa!
. ~A16!

Finally, after substitution of Eq.~A16! into Eq. ~A5!, we
arrive at

r̃2~k!1 r̃2,0
ind~k!

52
1

~2p!1/2 (
m2`

`

i m
s̃2~q,m!Jm~Ka!e2 imfK

k̃q@12b̃m~q!#I m~ k̃qa!Km8 ~ k̃qa!
.

~A17!

b. Molecule ‘‘1’’

The calculation ofr̃1(k)1 r̃1,0
ind(k) is more involved be-

cause molecule 1 is shifted and rotated with respect to tz
axis of our Cartesian laboratory frame. Thus, we introdu
two auxiliary Cartesian coordinate systems as follo
~Fig. 1!:

~i! r 8[(x8,y8,z8) is shifted from~x,y,z! by the vectorR
connecting the points of the closest approach of the axe
molecules 1 and 2;

~ii ! r 9[(x9,y9,z9) is obtained by rotation of (x8,y8,z8)
by the anglec so thatz9 coincides with the axis of molecul
1.

We user8 and r9 to denote the charge density function
(x8,y8,z8) and (x9,y9,z9) coordinates, respectively.

Since

r1~r !1r1,0
ind~r !5r18~r1R!1r1,0

ind~r1R!, ~A18!
-
.

e
s

of

we find

r̃1~k!1 r̃1,0
ind~k!5e2 ikR@ r̃18~k!1 r̃1,0

ind8~k!#. ~A19!

Introducing a Euler rotation matrixTI,

r 95TIr 8 ~A20!

TI5S 1 0 0

0 cosc 2sinc

0 sinc cosc
D , ~A21!

we obtain

r̃8~k!5
1

~2p!3/2E d3r 9r9~r 9!eikT21r9

5
1

~2p!3/2E d3r 9r9~r 9!ei mr9

5 r̃9~m!, ~A22!

where

m5TIk5S kx

ky cosc2kz sinc
ky sinc1kz cosc

D . ~A23!

From Eqs.~A19! and ~A22! we find

r̃1~k!1 r̃1,0
ind~k!5e2 ikR@ r̃19~m!1 r̃1,0

ind9~m!# ~A24!

and by analogy with Eq.~A17! we arrive at

r̃1~k!1 r̃1,0
ind~k!52

e2 iKR cos~fK !

~2p!1/2 (
n52`

`

i n

3
s̃1~mz ,n!Jn~Ma!e2 infM

k̃mz
@12b̃n~mz!#I n~ k̃mz

a!Kn8~ k̃mz
a!

,

~A25!

where the relationship between the cylindrical coordinates
the vectorsk5(q,K,fK) andm5(mz ,M ,fM) is given by

mz5q cosc1K sinfK sinc, ~A26!

M5AK21q22mz
2, ~A27!

cosfM5
K

M
cosfK , sinfM5

K sinfK cosc2q sinc

M
,

~A28!

where the second part of Eq.~A28! is used to determine the
quadrant offM .

3. Interaction between molecules with arbitrary surface
charge patterns

After substituting Eqs.~A17!, ~A25!, and ~A2! into Eq.
~A4!, we obtain
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Eint5
2

«s
(

n,m52`

`

i n2mE
0

`

K dKE
0

2p

dfKE
2`

` dq

~K21k̃q
2!

3S s̃1~mz ,n!s̃2~2q,2m!Jn~Ma!Jm~Ka!e2 iKR cos~fK !e2 infMeimfK

k̃mz
k̃q@12b̃n~mz!#@12b̃m~q!#Kn8~ k̃mz

a!Km8 ~ k̃qa!I n~ k̃mz
a!I m~ k̃qa!

D . ~A29!

This expression relates the interaction Hamiltonian with the surface charge densities on any two crossed molecules r
of the details of their surface charge patterns. It is applicable to interaction between rods with arbitrary surface
distributions. This expression is not exact because it is based on the first order approximation for induced charge de
becomes exact in nonpolar media where«s5«c5« andk50. In this case, it has the form

Eint5
2a2

« (
n,m52`

`

i n2mE
0

`

K dKE
0

2p

dfKE
2`

` dq

~K21q2!

3@s̃1~mz ,n!s̃2~2q,2m!Jn~Ma!Jm~Ka!e2 iKR cos~fK !e2 infMeimfK# ~A30!

4. Interaction between molecules with helical surface charge patterns

After substitution of Eq.~6! into Eq. ~A29!, we arrive at

Eint'
8p2s0

2

«s
(

n,m52`

` E
0

` K dK

~K21k̃q
2!
E

0

2p

dfKE
2`

`

dq

3@eiKR cos~fK !i n2me2 infMeimfMein~gz12f1!e2 im~gz22f2!#

3S p̃~mz!p̃~2q!d~mz1ng!d~q1mg!Jn~Ma!Jm~Ka!

k̃mz
k̃q~12b̃n~mz!@12b̃m~q!#Kn8~ k̃mz

a!Km8 ~ k̃qa!I n~ k̃mz
a!I m~ k̃qa!

D . ~A31!

The delta function,d(q1mg), removes the integral overq. Simplifying the resulting expression, we find

Eint'
8p2s0

2

«susincu
(

n,m52`

` E
0

` dK

~K21km
2 !

3
r̃~2ng! p̃~mg!Jn~Ma!Jm~Ka!

knkm@12b̃n~ng!#@12b̃m~mg!#Kn8~kna!Km8 ~kma!I n~kna!I m~kma!

3E
0

2p

dfkdS sinfk1
un,m~c!

K
D

3cosFKR cos~fk!1nfM~fk!2mfk1~m2n!
p

2
2n~gz12f1!1m~gz22f2!G , ~A32!
where

un,m~c!5
ng2mgcosc

sinc
~A33!

and

kn5Ak21n2g2. ~A34!

Let us use the equality
dS sinfK1
un,m~c!

K D5
U~K2uun,m~c!u!

ucosfKu @d~fK2fK
# !

1d~fK2p1fK
# !#, ~A35!

where U(x) is the Heaviside step function~U(x)51 at x
>0 andU(x)50 at x,0! and

fK
# 5arcsinF2un,m~c!

K G5arctanF 2un,m~c!

AK22un,m
2 ~c!

G .

~A36!

Using Eq.~A28! for fM(fK), we find
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fM~fK
# !5arctanF um,n~c!

AK22un,m
2 ~c!

G . ~A37!

After we substitute Eqs.~A35! and ~A37! into Eq. ~A32!,
.
s
n

t

introduce a new variable

t5AK22un,m
2 ~c!, ~A38!

and calculate the integral overfK , we obtain
Eint'
8p2s0

2

«susincu
(

n,m52`

`
~21!np̃~2ng! p̃~mg!cos@n~f12gz1!2m~f22gz2!#In,m

knkm@12b̃n~ng!#@12b̃m~mg!#Kn8~kna!Km8 ~kma!I n~kna!I m~kma!
, ~A39!

where

In,m52E
0

`

dt
Jn@aAt21um,n

2 ~c!#Jm@aAt21un,m
2 ~c!#

~ t21un,m
2 ~c!1km

2 !

3cosFRt1nS arctanFum,n~c!

t G1
p

2 D1mS arctanFun,m~c!

t G1
p

2 D G . ~A40!
ints

-
n

Calculation of In,m by contour integration

On the complex plane, the integrand in Eq.~A40! has a
pole at t56 iAun,m

2 (c)1km
2 and several branching points

The contributions from the latter can be removed after a
of exact transformations of the integral, which are differe
for zero and nonzero values ofun,m(c).

First, consider the case when bothun,m(c)Þ0 and
um,n(c)Þ0. In order to remove a branching point att50, we
use the identity

arctanS un,m~c!

t D52arctanS t

un,m~c! D1sgn~un,m~c!!
p

2
,

~A41!

where the sign function is defined as sign(x)5x/uxu at x
Þ0 and sign(x)51 at x50. Then,

In,m5 i n~11sgn@um,n~c!#!1m~11sgn@un,m~c!#! Ĩn,m , ~A42!

where

Ĩn,m5E
2`

`

Dn,m~ t !dt ~A43!

and

Dn,m~ t !5eiRt
Jn@aAt21um,n

2 ~c!#Jm@aAt21un,m
2 ~c!#

@ t21un,m
2 ~c!1km

2 #

3H F12 i
t

um,n~c!G
n/2

F11 i
t

un,m~c!G
n/2

F12 i
t

um,n~c!G
m/2

F11 i
t

un,m~c!G
m/2J .

~A44!

In the derivation we used that arctan(x) is an odd and cos(x)
is an even function ofx and took into account tha
et
t

arctan(x)5(i/2)ln@(12ix)/(11ix)#. The Bessel functionsJn
and Jm in Dn,m(t) have branching points att56 ium,n(c)
that are compensated by the corresponding branching po
of the fraction in curly brackets. Thus,

Ĩn,m52p i Res$Dn,m% t5 iAu
n,m
2 ~c!1k

m
2

5p i n@12sgn~um,n~c!!#1m@12sgn~un,m~c!!#

3e2RAun,m
2

~c!1km
2 I n@akn#I m@akm#

Aun,m
2 ~c!1km

2

3FAum,n
2 ~c!1kn

21um,n~c!

Aum,n
2 ~c!1kn

22um,n~c!
G n/2

3FAun,m
2 ~c!1km

2 1um,n~c!

Aun,m
2 ~c!1km

2 2um,n~c!
Gm/2

. ~A45!

At cosc5n/m, un,m(c)50 while at cosc5m/n,
um,n(c)50. Eq. ~A41! cannot be used atun,m(c)50 or
um,n(c)50 ~un,m andum,n cannot have zero values simulta
neously at nonzeroc!. Consider, e.g., the case whe
un,m(c)50 andum,n(c)Þ0. Then,

In,m5~21!m~21!n~11sgn@um,n~c!#!/2 J̃n,m , ~A46!

where

J̃n,m5E
2`

`

dt
Jn@aAt21um,n

2 ~c!#Jm@at#

~ t21un,m
2 ~c!1km

2 !

3cosFRt2n arctanF 1

um,n~c!G2m
p

2 G . ~A47!

Here we used that the product ofJm and cos in the integrand
is an even function oft regardless ofm. After performing the
integration in the same way as above, we find that
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J̃n,m5 Ĩn,m ~A48!

whereĨn,m is still given by Eq.~A45!. At un,m(c)50, within
our definition of sgn(x), m(11sgn@un,m(c)#)/25m.

Thus, whetherun,m or um,n have zero values or not, w
end up with the same result forIn,m which is

In,m5p~21!n~21!me2RAun,m
2

~c!1km
2 I n@akn#I m@akm#

Aun,m
2 ~c!1km

2

3FAum,n
2 ~c!1kn

21um,n~c!

Aum,n
2 ~c!1kn

22um,n~c!
G n/2

3FAun,m
2 ~c!1km

2 1um,n~c!

Aun,m
2 ~c!1km

2 2um,n~c!
Gm/2

. ~A49!

After substitution of Eq.~A49! into Eq. ~A39! we arrive at
the formula for the interaction energy given by Eq.~9!.
.

.

ol

V.

A

v

5. Interaction between two helices with parallel long axes

At c50, we find thatM5K, mz5q, fM5fK . Then,
after integrating overfK and subsequently overK, Eq.~A29!
takes the form

Eint5
4p

«s
(

n,m52`

`

~21!m

3E
2`

` s̃1~q,n!s̃2~2q,2m!Kn2m~ k̃qR!dq

k̃q
2@12b̃n~q!#@12b̃m~q!#Kn8~ k̃qa!Km8 ~ k̃qa!

.

~A50!

For infinitely long parallel molecules, the total energy
interaction atc50 is infinite and the integral in Eq.~A50!
diverges. In this case, the meaningful value is the energ
interaction per unit length, which can be calculated
lim

L→`
(Eint /L), whereL is the length of the molecules. Then,

is convenient to introduce the charge density pair correla
function
s1,2~q,n,m!5 lim
L→`

H s̃1~q,n!s̃2~2q,2m!1s̃1~2q,2n!s̃2~q,m!

2L J . ~A51!

Within our definition of the Fourier transform,s̃1(q,n)s̃2(2q,2m)/L does not depend onL at L→` and*2`
` S1,2(q,n,m)dq

has a finite value@27#. Then, the energy per unit length of the molecules is given by

Eint

L
'

4p

«s
(

n,m52`

`

~21!mE
2`

` S1,2~q,n,m!Kn2m~ k̃qR!dq

k̃q
2@12b̃n~q!#@12b̃m~q!#Kn8~ k̃qa!Km8 ~ k̃qa!

. ~A52!

For b̃n(q)!1, this expression reduces to our previous result@27#, derived for«c /«s!1.
d.
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